Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions
نویسندگان
چکیده
Fourier and hyperbolic models of heat transfer on a fin that is subjected to a periodic boundary condition are solved analytically. The differential equation in Fourier and non-Fourier models is solved by the Laplace transform method. The temperature distribution on the fin is obtained using the residual theorem in a complex plan for the inverse Laplace transform method. The thermal shock is generated at the base of the fin, which moves toward the tip of the fin and is reflected from the tip. The current study of various parameters on the thermal shock location shows that relaxation time has a great influence on the temperature distribution on the fin. An unsteady boundary condition in the base fin caused the shock, which is generated continuously from the base and has interacted with the other reflected thermal shocks. Results of the current study show that the hyperbolic heat conduction equation can violate the second thermodynamic law under some unsteady boundary conditions.
منابع مشابه
A truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملAnalytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)
This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...
متن کاملThe Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions
In this paper has been studied the wave equation in some non-classic cases. In the rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...
متن کاملTransient Analysis of Two-Dimensional Cylindrical Fin with Various Surface Heat Effects
An analytical solution to the transient heat conduction for a two dimensional cylindrical fin with general boundary conditions is obtained by the principle of superposition and separation variables. In the analysis, homogeneous material properties and thickness, the convective heat transfer coefficient, the ambient temperature and the fin properties are assume to be constant. The closed form tr...
متن کامل